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ABSTRACT 

The purpose of this study is to explore the use of multiple representational modes as a 

tool for understanding the concepts of temperature and energy transfer in calorimetry. 

The focus is placed on which type of representation promotes students' understanding of 

these concepts, and which representations) facilitates translations to other types. This 

study considers verbal, mathematical, and graphical representations. The statistical 

analysis of a problem set completed by 111 a freshmen college chemistry students and a 

semi structured interview on one-to-one basis to 23 students, is used to diagnose students' 

understanding of calorimetry and the use of representations. Based on these results a 

model for conceptual understanding is proposed. 
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INTRODUCTION 

Scientific ideas cannot be abstracted from the language used to express them. Therefore, 

the limitation of the language1 becomes the limitation of the science. The scientific 

language emerges from the intention to describe reality (or referent} with the purpose of 

finding an underlying pattern in nature (Krieger, 1987). The scientific language is in the 

most general sense, a representation. In particular, representations in physics can be 

conceptual or methodological tools having a symbolic (mathematical and diagrammatic), 

or rhetorical character. Many conceptual and methodological tools can be transferred 

from one field into another, given a sense of unity to scientific knowledge2 and yet, 

representations are versatile depending on the reality that they attempt to represent. In 

other words, representations function passively as representational formats, 

decontextualized from the referent, and actively as meaning construction, or referent 

dependent (Posner et al. 1982). 

The use of representations requires not only the skill of manipulating them, but also 

assessing which tool is appropriate to a specific situation. Similarly, a referent (a physical 

system or process) can be represented in different modes with the purpose of deepening 

in understanding and problem solving skill (Chi et al., 1981; Larkin, 1983; Janvier, 1987; 

Maloney, 1993). In the classroom, the use of diverse representations of a referent was 

shown to increase conceptual understanding of it (Reif, 1995; Hestenes, 1996) while 

mastering one form of representation could be beneficial for improving the use of other 

~ The word language refers to any kind of expression to convey an idea. 
2 Reinforcing the idea of an underlying pattern. 
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modes (Lesh, et al. 1987). The transfer between different representational modes requires 

the identification of "core concepts" of the referent in order to guarantee its invariance 

through diverse representations. The identification of essential characteristics of a 

referent constitutes the conceptual understanding of it. 

Several works address the use of multiple representations for learning and teaching 

different physics topics. The use of graphs in kinematics was thoroughly explored by 

Lillian Mc Dermott and collaborators (1987), and Beichner (1994 and 1996). Also topics 

such as particulate model of matter (Rhor and Reimann, 1998), mechanical systems 

(Dolin, 2001), and electricity (Frederiksen et al., 1999) were examined under the scope 

of multiple representations. However, in spite of well-known students' difficulties in 

dealing with topics of thermodynamics (Rozier and Viennot, 1991; Loverude et al., 2002; 

Granville, 1985; van Roon et al. 1994; Jasien and Oberem, 2002; Greenbowe and 

Meltzer, 2002), there are no studies that address directly the use of representations in that 

context3. 

The use of multiple representations in class constitutes a strategy to promote the 

evaluation of alternative explanations, and to solving problems. These teaching goals, as 

specified by the National Science Education Standards (1996), are crucial to any science 

class. Also the use of representations can make evident the inconsistencies that result 

from students' misconceptions. Indeed, different representations focus on different 

3 Some works discuss students' difficulties with heat and temperature concepts and the use of multivaried 
formulas as in Rozier and Viennot (1991), or in different contexts as calorimetry of solutions (Greenbowe 
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aspects of the referent, such that a misconception can be associated with a specific 

representational mode and unmasked by using a different mode to represent the referent. 

However, in order to implement the use of multiple representations and their translations 

in class, several questions should be answered: 

1) Which representation facilitates students' understanding of a referent? 

2) Which representations) facilitates a translation to other ones? 

The purpose of this study was to explore the use of multiple representational modes as a 

tool to understand a physical process by focusing on questions 1) and 2) for verbal, 

mathematical, and graphical representations of a heating process as a referent. In 

particular, students' understanding the specific heat equation in the frame of calorimetry 

was explored. The specific heat capacity equation is, 

q = mcOT (eq. l ) 

where q represents heat, m is the mass of the substance, c its specific heat, and dT is 

substance's change in temperature. This is acause-effect equation, implying that a 

process takes place due to a causal relation between variables. A substance (of mass m 

and specific heat c) experiences an energy transfer in the form of heat (q), because its 

temperature changed (dT), and vice versa, the temperature changes because there is a 

transfer of energy between the substance and the surroundings. These functional. and 

multivariate characters (meaning that relates more than one variable) makes the specific 

heat formula an interesting object of study that goes beyond its context of definition. 

and Meltzer; 2002). However these works do not recognize formulas of physical contexts as representations 
of a physical concept. 
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Physical equations4 that describe a process are cause-effect (examples are Maxwell's 

equations in electrodynamics, Second Newton's Law in mechanics, etc...) and many of 

them are multivariate5. The relevant idea of cause-effect equations is that, in a specific 

context, each side of the equation cannot exist a priori from the other. 

The present study addresses students' notion of cause-effect in the context of calorimetry 

and how this idea is expressed in diverse representational modes. Hence, the design of 

research tools and students' data analysis are oriented to determine students' concepts 

and working modes in calorimetry, and how conceptual understanding and 

representational modes are related. 

The research tools were a quiz or problem set, and asemi-structured interview, both 

containing problems on calorimetry. 

1. The problem set aimed to test the conceptual understanding of the specific heat 

equation: the cause-effect relation and its multivariate character. The problem set 

focused on the verbal and equation representations of the specific heat equation 

(eq. 1) and their translation, and on the concept of a thermodynamic system and 

the interaction between its components. A copy of the problem set with the 

solution of the analyzed questions (in italics) is attached in Appendix I. Freshmen 

chemistry students in a General Chemistry course completed the quizzes after 

instruction on calorimetry. A sample of 111 quizzes was randomly selected from 

a total of 450. 

a Cause-effect equations differ from mathematical equations in that the latter describe equivalences. 
5 An example of one variable cause-effect equation is Newton's Law, F=ma. 
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2. The interview questionnaire aimed to test the same calorimetry concepts as in the 

problem set, including text, equations and graphic representations, and their 

translation. A copy of the questionnaire with the solution of the non-graphical 

questions (in italics) is attached in Appendix II.23 freshmen chemistry students 

were interviewed after instruction on calorimetry was completed. 

The text of written responses of quizzes and interviews was analyzed. For the quiz the 

analysis focused on the problems referring to two different thermodynamic systems, 

isolated substances on a heating plate (Problem 1) and substances in a calorimeter 

(Problem 2). Different categories emerged from students' explanations, and aChi-Square 

analysis was performed seeking a statistical relationship between the category of the 

explanation and the working representation (verbal or equation). 

Interviewed students worked through the problems of the interview questionnaire. After 

the completion of each problem students were asked to explain their responses and justify 

each step. These interviews were semi-structured (Taylor and Bogdan, 1998); in spite of 

a "standard" set of questions students' ideas were probed with follow-up questions. The 

problems of the questionnaire and the follow up questions encouraged discussion of 

concepts and translations between modes of representations. The audiotaped interviews 

were transcribed and analyzed with the purpose of finding trends and patterns of 

students' reasoning in calorimetry. 
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The results from problem set and interviews can be grouped in modal and conceptual 

categories (or operational and explanatory for the statistical analysis). In what follows 

conceptual and modal results aze summarized for both quizzes and interviews. The most 

relevant conceptual trends displayed by the students were: 

1) Correct use of the energy conservation principle in a calorimeter 

2) Associate energy transfer with the difference in the initial temperature of 

substances in a calorimeter, or bond breaking and forming for a chemical reaction 

3) The idea of heat as a fluid 

4) Use of the molecular theory to describe heat and temperature 

5) Confusion between heat and temperature 

6) Correct explanation of how the change in temperature depends on the specific 

heat 

7) Recognize a direct relation between heat and the amount of substance. 

The results emerging from the analysis of the working modes were the following, 

1) The use of formulas is preferred for learning a new topic and to minimize the 

ambiguity found in textbooks. 

2) Users of formulas required numerical values. Students displayed difficulties in 

using formulas in an abstract way, although they were able to do algebraic 

manipulations. 

3) Users of formulas tended to omit verbal explanations. 

4) Graphs were welcomed as facilitators of understanding. Many students claimed 

that they are "though provoking" 
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5) Users of graphs determined the critical points of the graph by using equations (as 

the calculation of the equilibrium temperature). Also, students associated the 

parameters of the graph with parameters given in the problem. 

6) The use of graphs promoted extended responses from the students. 

7) Use of words is preferred to express conceptual understanding 

8) Words can be used in decontextualized problems that encourage conceptual 

understanding and self-reflection about the learned topics. 

9) Students that correctly answered using words gave correct explanations; either 

based on the cause-effect chazacter of the specific heat equation or on the values 

of the parameters of the problem. 

Based on these results a model of conceptual understanding is proposed, the Stairway 

Model, based on the interplay between rhetorical and symbolic (in this case symbolic 

refers to equations and graphs) representations. Iterations of the translation between 

verbal and symbolic modes correspond to progression of the ability to make abstractions 

that lead to the organization of large structures of knowledge. 

The chapters of this study are organized in the following way. Chapter 1 contains a 

literature review focused on relevant calorimetry topics (conservation of energy, heat and 

temperature and specific heat equation) and the use of representational modes in college 

classes for solving physics problems. A brief discussion on the difference in the use of 

representational modes between novices and experts is also included. Chapter 2 describes 

the research methods, the design of the research tools, the experimental conditions of this 
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study, and the statistical analysis. Semi-structured interviews (see Appendix II) and 

quizzes (in Appendix I) allowed a qualitative and a quantitative analysis of students' 

understanding of calorimetry concepts and representational modes. Chapter 3 summarizes 

the results obtained from interviews and quizzes. A synoptic table of conceptual and 

modal categories that emerged from the analysis of the interviews is shown in Figure 2. 

The results of the statistical analysis of the relation between working modes and the 

displayed understanding of calorimetry topics are discussed in Chapter 3, while tables of 

the frequency distribution and statistical results are included in Appendix III. Examples 

of quiz problems coding are included in Appendix Iv. Chapter 4 contains the conclusions 

derived from qualitative and quantitative results. Based on this study's results and 

conclusions regarding the interplay between textual and symbolic modes, a model for 

conceptual understanding is proposed, the Stairway Model. This chapter also contains 

some reflections on the weakness of this study and ideas for future work. 
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CHAPTER 1: LITERATURE REVIEW 

Thermodynamics offers "simple" and "concrete" contexts through which to introduce and 

apply fundamental concepts of physics. The notion of system, energy conservation, and 

cause and effect relations are fundamental ideas in physics. Indeed, in college physics 

and chemistry, the study of classic thermodynamics including calorimetry, state 

functions, ideal gases, etc... takes place early in the instruction and has a character of 

"seminal ground" for the application of these ideas. Hence, the study of how students 

learn thermodynamic concepts could have impact in other contexts. 

Calorimetry deals with the calculation of heat, or energy transferred, through the 

measurement of the temperature change produced by it when the pressure of the system is 

kept constant. In order to derive the energy transferred in a system, physical processes 

and chemical reactions take place in an insulating container. Three fundamental ideas can 

be introduced through calorimetry: a) the principle of conservation of energy within a 

system, b) differentiation between intensive and extensive properties of a substance (as 

temperature and heat respectively), and c) cause and effect relations. The last two ideas 

derive from the specific heat equation through which heat is linked to temperature 

change. Students' knowledge construction of physical ideas result from conceptual 

understanding (internal representation), and their way of expressing them (external 

representation) (Posner et al., 1982). Although both aspects are interwoven, here they are 

treated separately for sake of simplicity. In what follows research studies concerning 

students' understanding of these three thermodynamics concepts and their representations 

are reviewed. 
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About thermodynamic concepts 

In the last twenty years educators realized that in order to teach physics it is necessary to 

ask what students know when they come to class and how they interact with the learning 

environment and content (Redish, 1994). A basic understanding of the notion of energy 

conservation requires understanding of the notions of energy degradation (Duit and 

Kesidou, 1990) and physical systems. Novices' understanding of fundamental physical 

concepts is strongly associated with the context in which they are introduced. As was 

indicated by van Roon and collaborators (1994) in a study that included university 

freshmen chemistry students, the concepts of system, surroundings, boundary and 

thermodynaric state, and their interrelations are better understood in context of 

thermodynamics. Asimilar result was found by other researchers (Summers, 1983; Se-

Yuen and Young, 1987) for high school students. 

Novice students find it difficult to define the concepts of heat and temperature (Erikson, 

1980; Erikson and Tiberghein 1985; Kesidou et al., 1995; Greenbowe and Meltzer, 

2002). In a study that included written answers from 653 students in four introductory-

calculus based general physics courses, Meltzer (2001) found that students have 

difficulties in distinguishing heat and work (possibly because they share the same units); 

or that students viewed temperature as a measurement of heat. In some cases, temperature 

and heat are viewed as synonyms or as a unifying word to express ideas of cold and hot 

(Kesidou and Duit, 1993; Erikson, 1985; Loverude et al., 2002}. 
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Understanding the concept of heat requires a process of differentiation of related concepts 

as energy, temperature, and entropy (Kesidou et al., 1995). Students' difficulty in 

distinguishing heat and temperature can be attributed to the ambiguous understanding of 

heat. Initial knowledge is substance based, and it represents novice understanding of how 

objects function. Novices tend to attribute material properties to abstract physics 

concepts, such as heat, force, electricity, etc... Under this materialistic conception, heat 

and cold are inherent proprieties of objects and heat and cold accumulate and can be 

contained (Reiner at al., 2000). Students' materialistic ideas of heat, and lack of 

differentiation between heat and temperature, resemble the historical development of the 

concept of heat (Wiser and Carey, 1983; Kesidou et a1.,1995). 

Van Roon and collaborators (1994) suggested that a source of confusion encountered by 

university freshmen students with the (thermodynamic) concept of heat could be the use 

of a word that has a meaning in common parlance. They claimed that in order to assign a 

thermodynamic meaning to heat, it is necessary to develop a "thermodynamic context." 

Students develop an "energy conception" of heat, referring to "heat conservation," for the 

energy conservation principle, and "heat as a type of energy," in the context of the first 

law of thermodynamics and state functions. This is in contrast to a materialistic 

conception of heat, typical of a thermochemistry (calorimetry) context (van Roon et al., 

1994). Also the microscopic context used to explain temperature interferes with the 

macroscopic context in which concepts of work, heat and internal energy are defined 

(Loverude et al., 2002) 



www.manaraa.com

12 

Difficulties in recognizing the differences between temperature and heat are not 

overcome with the use of the specific heat equation (Gabel and Bunce, 1994), which links 

temperature change and heat. A study based on interviews of 16 college physical 

chemistry students found that many students have alternative conceptions or no 

conceptions at all of chemical equilibrium and thermodynamics. (Thomas and Schwenz, 

1998). A study that included 421 participants with different backgrounds in physical 

sciences (physics students, organic chemistry students and in-service teachers) and 

different numbers of college physics courses, aimed to determine students' understanding 

of the concept of thermal equilibrium and its relation to temperature. Extended surveys 

were used to explore students' ideas about the physical basis for heat transfer and 

temperature change. The main results were: 1) no correlation between the number of 

college physics courses and the ability to answer correctly questions regarding 

fundamental principles of calorimetry. 2) A general confusion of specific heat with "heat 

per gram" held by a substance (Jasien and Oberem, 2002). Apparently failing to 

distinguish heat and temperature, one as energy transfer not inherent to a substance but 

depending on it, while the other as an intensive property of a substance, makes it hard to 

realize the cause and effect relation between temperature change and heat. 

The specific heat equation is a multivariate equation linking heat and temperature change 

to two other variables: mass and specific heat. Multivariate problems are complex, and 

novices tend to simplify them (Rozier and Viennot, 1991). In a study that involved the 

analysis of written questionnaires of 2000 students, including science majors and 

prospective engineering students from the first four university years, Rozier and Viennot 
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(1991) were able to characterize the simplification process of multivariate problems. 

Theses authors indicate two main aspects: 1) a physical quantity that depends on several 

variables is treated as depending on only one variable. This reduction sometimes results 

from combining two variables, as if they were two different aspects of the same variable. 

2) The application of a chronological argument to the many variables of the problem, 

instead of the consideration of the simultaneous change of several variables. This implies 

that there is an order in the action of the variables. Simplifications of multivariate 

problems interferes with the type of reasoning required for conceptual understanding 

(Luger, 1994). 

About modes of representations 

A range of diverse representations is required to expand the conceptual space associated 

with physical ideas into larger knowledge structures or models (Hestenes, 1996). 

Representations range from images of real objects (iconic representations) to entities that 

represent ideas (as language, mathematical symbols, graphs, diagrams, etc...) and their 

organization (or models). Different representational forms can refer to different aspects of 

a referent. Hence, the ability to link different representations contributes to conceptual 

understanding of a referent (Dolin, 2001). 

The ability of transferring between different representational modes can be associated 

with problem solving. Good problem solvers tend to be flexible in their use of a variety 

of representations switching to the most convenient for emphasizing the desired 

characteristics during the solution process (Lesh et al., 1987). Transfer can be done for 
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efficient manipulation of quantitative relationships or for conceptual understanding. 

Other studies explored the impact of the use of multiple representations on high school 

students' ability to solve problems in physics. The results show that use of 

representations not only enables students to successfully solve the problem, but also 

enhances conceptual understanding (McMillan and Swandener, 1991; Ping-Kee, 2001). 

An example of conceptual transfer can be found in the use of analogies. Analogies work 

on the premise that the import of relations and operations from one domain to other 

further thinking (Greeno, 1983). The source of an analogy is a problem solution, an 

example, or a theory well understood, while the target is anon-familiar problem or 

system. Analogies either map elements from the source into the target, or is based on 

mutual alignment of partially known situations (Miao et al., 2001). In either case, 

analogies contribute to increasing conceptual understanding of scientific concepts 

through the promotion of inferential reasoning (B ouJaoude and Tamin, 2000; Yanowitz, 

2001; Baker and Lawson, 2001). Moreover, inferences people make vary according the 

analogies they use (Gentner and Gentner, 1983). 

The differences in expert and novice performances can be related to use of different 

problem representations. Novices use a "naive" problem representation, composed of 

objects that exist in the real world related through operations that occur in real time (as to 

push a spring, to move a block, etc... ). Experts, in addition to this Halve representation 

have a "physical" representation that includes abstract entities such as forces, magnetic 

field, etc... (Larkin, 1983). These entities are related through the laws of physics, or 



www.manaraa.com

15 

physical operators and provide arguments on which general reasoning procedures about 

parts and whole can operate (Greeno, 1983). Experts usually use qualitative 

representational objects such as pictures, graphs, diagrams and bar charts, instead of only 

using quantitative representations (formulas) as novices do (Plotzner, 1994). 

Indeed, students' ability to solve problems increases when emphasis is placed on the use 

of qualitative representational modes (Larkin, 1983; Hestenes, 1987). A study that 

involved students in an introductory university physics course indicates that qualitative 

representations build a bridge between words and equations and help students to 

understand mathematical symbols (van Heuvelen and Zou, 2001). In particular, these 

authors report on the benefits of the use of bar charts as visual aids for understanding the 

energy conservation principle and facilitating quantitative predictions in a classical 

mechanics context. However, the use of qualitative representations is productive when 

students understand what is being represented or how qualitative representations operate 

in problem solving. 

The use of graphical representations, including the ability to construct and interpret them, 

is critical for scientific conceptual understanding (Berg and Smith, 1994). Graphs are 

viewed as representational objects that summarize functional relations between variables 

(Linn, 1987; Mokros, 1986; McKenzie and Padilla, 1986). However, students' graphing 

abilities are affected by both content knowledge and cognitive development (Berg and 

Phillips, 1994). In trying to identify learner "misconceptions" of graphing, many authors 

(Kerslake ;1977; McDermott et al., 1987; Shultz, 1986) found that students see graphs as 
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a picture instead of a symbolic representation of data and its functional relationship. 

Results from a study conducted by Berg and Phillips (1994) indicate a strong correlation 

between logical thinking and graphing ability. Students who displayed evidence of 

mastering concrete operations related to the Euclidean space (Piaget and Inhelder, 

1948/1969), such as conservation of distance, size, angles and parallels, and the ability to 

use coordinate systems, were able to construct and interpret graphs better than students 

with poor logical thinking. 
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CHAPTER 2: METHODS 

Method I: Interviews 

Selection of participants 

A sample of twenty-three freshmen students of an introductory college course on General 

Chemistry was interviewed. All students were enrolled in the same semester course (total 

enrollment 650), attending the same lecture but different recitation and laboratory 

sections. All the interviewed students had at least one high school course in chemistry 

and physics, and 20 students out of 23 major in some area of engineering. Although 

students' grades were not a consideration in the selection of the sample, the grade 

distribution of the interviewed students is tightly concentrated on the high end of the 

scale, see Figure 1 at the end of this section. In order to enhance the accuracy of the 

study, the lecturer of the course was also interviewed. 

Data Collection 

The interviews were conducted in the university between two and four weeks after the 

instruction on calorimetry was completed. Each student was interviewed during one hour. 

The interview was conducted, audio taped, and transcribed by the same researcher. The 

interviews were semi-structured (Taylor and Bogdan, 1998) consisting of a written and 

oral part. The written part was based on a set of six problems including close-ended 

(definite response) questions (see Appendix n, while the oral component of the interview 

included follow-up questions aimed at exploring students' conceptual understanding and 

the procedure used for solving the problems of the set. The follow-up questions took 
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place after the completion of each problem. Written and oral questions allowed a 

triangulation of the evidence emerging from the data. 

The semi-structured oral interview of the lecturer took place after the analysis of 

students' interviews. The questions in this interview were intended to clarify some 

recurrent students' themes emerging from students' data. Indeed, the purpose of the 

lecturer interview was to provide a triangulation source to corroborate the evidence 

derived from students' interviews by comparing different population (students and 

lecturer) discourses. The questions included in the interviews allowed a qualitative 

analysis of the data. 

Qualitative Analysis of the Data 

The data was first segmented in units of information (or themes) and then each unit was 

labeled with a code regarding the content of the information. Codes that presented some 

overlapping in their content were grouped together in broader categories; these categories 

constitute the emerging themes of the data. This procedure was used with the oral and 

written components of each interview. The categories that are recurrent in at least 10% of 

the interviewed students were identified as emerging themes. 

Qualitative research Tools: Interview Questions 

The problem set included in the semi-structured interview (see Appendix n was designed 

to answer the research questions of the present study: Which representations) facilitates 

students understanding of temperature and heat, and which representations) facilitates a 
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translation to other ones? There are two main aspects included in the problem set, one 

aspect deals with the concepts of energy transfer and temperature change, while the other 

deals with the way these concept are represented (formula, words or graphs) and the 

transfer between these representational modes. Previous research results indicate that the 

understanding of some thermodynamic concepts strongly depends on the physical context 

in which they are presented (Greenbowe and Meltzer, 2002; Meltzer, 2001). The problem 

set includes four different contexts: non-reacting substances in a calorimeter, chemical 

reaction, substances on a heating plate, and a de-contextualized frame. A summary of the 

interview problems regarding different combinations of concepts, contexts, and 

representational modes is shown in Table 1. These problems are mostly conceptual; they 

do not rely on the numerical values of the parameters (the only exception is the value of 

the specific heat for water and copper) but are based on relations between the parameters. 

The ability to transfer between the different representations was explored during the oral 

part of the interview, asking the students about their working mode preference, and 

similarities or contrasts between the different modes. 
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Table 1. Combinations of concepts, contexts, and representational modes through the 

problems of the written interview 

Concept Context Representation Problem number 

Temperature 
change 

Calorimeter 

Chemical reaction 

Heat plate 

De-contextualized 

Words; formula; graph 

Words 

Graph; words 

Words 

P 1 b; P 1 c; P4a, P4b, P6 

P2b 

Pia; P3b 

PSb 

Energy 
transfer 

Calorimeter 

Chemical reaction 

De-contextualized 

Words; formula; graph 

Words 

Words 

P 1 a; P 1 c; P4a, P4b, P6 

P2a 

PSa, PSb, PSc 

Specific Heat De-contextualized Words PSc 

Grades Distribution 

N
um

be
r o

f s
tu
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nt

s 

8-

6-
5-
4 
3 
2 
1 
0  

 i  ~~~ ~~~ ~~ w 
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Grade in (%) relative to the whole class 

Figure 1. Grade distribution of the interviewed students. Only the score of 22 students is 
reported here. 
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Method II: Quizzes 

Selection of Participants 

The student population, from which the quizzes were sampled, was enrolled in the same 

General Chemistry course with the same lecturer, but two semesters ahead of the 

interviewed students. This could allow comparing the results of the interviews with those 

of the quizzes because they received similar instruction. A sample of 110 students' 

quizzes was randomly selected from a group of 450 quizzes corresponding to freshmen 

chemistry students. The students were enrolled in different laboratory sections with 

different instructors; fourteen instructors altogether. In order to minimize the effect of the 

instructors in the statistical sample through their impact in students' responses, a random 

sampling of the quizzes was done in a stratified way, per laboratory instructor, using a 

Random Number Table (Daniel, 1987). 

The students that participated in this study attended a General Chemistry course in which 

the instruction of calorimetry included lectures, recitations, and laboratory experiments. 

In lectures, students had demonstrations that emphasized the different conditions for 

temperature change and energy transfer for physical processes and chemical reactions. In 

particular, systems like hot metal and cold water in an insulating container, the 

dissolution of a salt, and acid-based reactions were introduced either in lecture or lab to 

introduce the concepts of heat and temperature change. The lectures were mostly problem 

solving oriented, emphasizing the use of formulas, while in the lab the students used 

diverse representational modes such as graphs, tables, and formulas. In lectures and home 

works, the students were exposed to simulations of the molecular motion to represent the 
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temperature of a substance. calorimetry is taught before the laws of thermodynamics 

because it introduces the concept of thermal equilibrium; as the instructor of the course 

explained, "....I have started the thermochemistry chapter specifically with calorimetry, 

because they [the students] can see what happens and they can see it in the lab..." 

The students that participated in this study had three laboratory sessions on calorimetry, 

including experiments with substances in calorimeters (metal and water) and chemicals 

reactions. In the lab, students record their observations in data tables and used graphs 

describing the temperature change of these systems. 

Data Collection 

A quiz on calorimetry (see Appendix In was given to the students two weeks after 

completion of instruction on that topic. The quiz was mandatory for al l the students 

enrolled in the course, and its grade contributed to the final student grade. Student's 

responses to three problems of the quiz (problem 1, 2d, and 2g) were analyzed to explore 

any possible relation between the mode of approach to a problem (operational variable, 

O) and the display of conceptual understanding (explanatory variable, E). 

Quantitative Data Analysis 

In order to find any relation between the operational and explanatory categorical 

variables, the quantitative analysis was based on the chi-squared test. This test compares 

the observed frequency distribution to frequencies that one would expect if the data 
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follow a particular distribution. The statistical test retrieves a value x2, which is a 

measurement of the extent to which the observed and expected frequency distributions 

disagree; the smaller the value of x2 the better the agreement between the frequencies 

(Daniel, 1987). 

When two categorical variables describe a set of entities, the resulting two-way 

classification can be summarized in a table with the categories of one variable as columns 

and the other variable as rows, the contingency table. If O and E are independent 

variables, the probability that a given category of O happen along with a category of E 

(the joint probability) is equal to the product of the individual probabilities for these two 

categories. In this way, the resulting frequency table represents the expected frequencies 

for independent variables. 

By comparing the observed frequencies with the expected ones, the null hypothesis that 

the two variables are not dependent can be rejected or sustained depending on the 

discrepancy of the chi-square distribution. If the chi-squaze test indicates that the 

variables axe dependent (null hypothesis rejected) an analysis of adjusted standardized 

residuals (Agresti and Finlay, 1997) was performed in order to find the related categories 

between the two variables. This analysis indicates if the distribution of each category of 

one variable follows a normal distribution centered on zero, with respect to the categories 

of the other variable. Two categories are related if their residual is not within two 

standard deviations of the normal distribution (r;~ not belong to [-1.96,1.96] interval, with 

r;~ the residual of the ij categories of variable O and E respectively). Examples of this 
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statistical analysis applied to the data are included in the Results chapter, Chapter 3, and 

in the Appendices IIIa, IIIb and IIIc. 

Quantitative Research Tools: Quiz Questions 

The focus of the quiz (see Appendix II) is on the concepts of energy transfer, temperature 

change, and the different parameters in the specific heat equation. The representational 

modes included in the quiz are formulas and words, while the physical context for all the 

problems is non-reacting substances in a calorimeter. Problem 1 centered on the use of 

the specific heat equation while problem 2 focused on the process that takes place when 

two non-reacting substances are put together in a calorimeter at different initial 

temperatures. In particular, problem 2d deals with the ideas of energy conservation and 

the change of temperature due to the energy transferred between the substances, and 

problem 2g deals with the effect of the mass on the temperature change. In order to 

complete each of these problems, students were required to perform an operation and to 

explain it. 
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CHAPTER 3: RESULTS 

The objectives of this investigation are to find which representations) promotes students' 

understanding of the concepts of heat and temperature, and which ones facilitate 

translations to other representations. In order to work toward this goal, the research 

instruments (interview and quiz) contained questions and problems .aimed at conceptual 

understanding, and the use of representational modes when dealing with heat and 

temperature. The interviews and quizzes have been analyzed under the scope of 

conceptual and modal categories. In the following sections trends emerging from the 

interviews and statistical results from the quizzes are presented. 

Trends from the interviews 

The results obtained from the students' interviews included oral and written parts. The 

categories and subcategories that emerged from the interviews, including the percentage 

of the interviewed students that correspond to each subcategory are summazized in the 

diagram of Figure 2 at the end of this section. The main subcategories emerging from the 

interview with the instructor are triangulated with those from students' interviews in 

Table 2. Both the diagram and the table are included at the end of this section. The 

information from the written responses given during the interview is supplemented with 

quotes from dialogs between the interviewer (n and students (S). 
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Conceptual categories 

Energy issues 

90% of the interviewed students correctly invoked the principle of conservation of energy 

to balance the energy transferred between the two substances in the calorimeter and in a 

chemical reaction. They recognized that the cold water should gain the same amount of 

heat lost by the hot metal in a calorimeter, as well as that the heat lost by the reactants 

should be equal to the heat gained by the solution. 

52% of the interviewed students justified the transfer of energy between the substances in 

the calorimeter because of the difference in their initial temperature. However, 30% of 

the interviewed students think of heat as a fluid flowing from one substance to another. 

For example one student said: 

S : ... the copper transfer its heat to the water, so when transfer 
enough heat they reach the same temperature. 

This view contradicts the scientifically accepted notion of heat as energy transfer (or 

change in internal energy). Most of the students that held a materialistic picture of heat 

were able to correctly operate with both conservation of energy and specific heat 

concepts. Nonetheless, the idea of heat as a fluid could impact the perception of a heating 

process; as a student explained when she/he was asked about the temperature change rate 

of water when the mass of hot metal in the calorimeter was doubled: 

I: Which process [with the original amount of copper or double 
amount] will take longer to heat the water? 
S: The second one [twice the original mass] because there is more 
heat to exchange. 
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In the case of the chemical reaction, 65% of the students associated bonds breaking and 

forming as the source of temperature change of the combined solution. 

The problem of heat and temperature 

Through the interview students were asked to relate the concepts of heat and temperature. 

Two types of relations can be distinguished; one focuses on the nature of heat and 

temperature, while the other is an operational relation. 35°Io of the interviewed students 

defined temperature and energy transfer based on a molecular explanation, as is 

illustrated in the following quote: 

S : copper molecules are moving really fast, water molecules 
are moving no so fast, so the copper molecules are causing 
the water molecules to move fast and therefore there is an 
increase in temperature. 

However, only 25% of the students who invoked the molecular model correctly stated 

that temperature is the averaged kinetic energy of the particles, and that heat is related to 

energy transfer or is a "kind of energy". 

Another group of students, 30%, referred to an operational relation between temperature 

and heat indicating, "temperature measures heat." This idea contradicts the statement of 

the First Law of Thermodynamics, in which heat is related to the change in internal 

energy, while temperature is proportional to the molecular kinetic energy. In some cases, 

the source of this operational relation seems to arise from the fact that students are 

familiar with the use of thermometers to measure temperature, as one students explained: 
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S : Temperature is a measurement, is a device to measure 
heat.... is an instrument for making calculations. Is a way 
to measure relative heat, is like you compare the 
temperature of two substances, one at OC and the other at 
l OOC, the relative difference is l OOC ....T is a reflection of 
the relative heat. 

As can be seen from the above quote, some students, while supporting the idea that 

temperature is a measurement of heat, confused heat with temperature. In particular, 42% 

of the students who indicated an operational relation between heat and temperature 

confused thermal equilibrium with equal heat distribution, as follows form this quote, 

S : When two substances at different temperature are in contact 
reach equilibrium. 

I: When you say "reach equilibrium," equilibrium of what? 
S : Of heat distribution 

18% of the interviewed students thought that temperature and heat are the same because 

of the energy balance, as was answered by one student 

The temperature of Cu(s) will go down by the same amount 
as the H20(1) goes up because the Cu(s) is losing heat to the 
H20(1). 

In particular, 10% of these students used only the equation of conservation of energy (ql

+ q2 = 0, with ql and q2 the heat transferred to substance 1 and 2 respectively) to explain 

the temperature change of the substances. Another 10%. of the interviewed students 

indicated that temperature represents heat average: "Temperature is a measurement of 

heat, is like the average." In general, students who stated an operational relation between 

heat and temperature see them as interchangeable concepts, as is indicated by this 

student, 
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S:... heat can be measured. You can take a thermometer 
and see how much heat is in the substance. 

Dependence of the temperature change 

Problems 1 b, 4a, and 4b aimed for the inverse relation of the temperature change of a 

substance with its mass and specific heat, as is indicated by the specific heat equation (eq. 

1-). Students recognized the specific heat and the mass of the substances as the main 

factors affecting the temperature change. 78% of the students based their explanation of 

the difference in temperature changes for water and metal, on the meaning of specific 

heat. They clearly pointed out a functional relation between the specific heat and the 

change in temperature, 

S: Since water has a higher specific heat, it takes more heat 
to heat it up than copper. Copper has more of a temperature 
change than water 

17% of the students described the problem of two non-reacting substances in a 

calorimeter in terms of a chemical reaction taking place in a calorimeter, and they could 

not apply the specific heat equation to the "reactants and products" of the system. 

A smaller portion of the interviewed students, 13%, associated the difference in 

temperature change with heat conductivity. 

The fact that the mass of the substances affects the amount of heat gained and lost was 

indicated by 70% of the interviewed students. As an example this is what one student 

said: 
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S: ... because copper is doubled will cool less, and water 
heat more because there is more copper. So there is less 
water to absorb the heat. 

Other students were able to relate the change in the mass of copper to the amount of the 

heat, and subsequently to the rate of temperature change of the water, 

S: Copper will lose heat at the same rate but water will rise faster 
because there is much copper....is just given off twice as much 
heat, because there is more [copper]. 

The difference between the transfer of energy and temperature change for a physical 

process and a chemical reaction was emphasized in problems 1 and 2. 73% indicated that 

the physical context impacted on the understanding of these concepts. 52% of the 

interviewed students referred to the system of hot metal and cold water as the simplest 

one in which the variables can be identified, and for which people are more familiar. As 

one student said, 

S : Chemical reactions can be difficult because there is no mass and 
could be confusing to know how something that you really cannot 
see or grasp can transfer energy. 

Modal categories 

The representational modes presented in students' interviews were formulas, graphs, and 

words. Students were interviewed on the use of these modes and the interrelations 

between them. 

Characteristics of the use of formulas 
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48% of the interviewed students preferred to work with formulas as a first approximation 

in order to understand a topic. One of the reasons students prefer the use of formulas to 

the use of words, is their specificity. As one student explained, 

I: How you understand [a new topic] better, with a formula 
or a text? 
S : Usually with a formula, because sometimes the text in 
books is written funny, but mathematical symbols mean the 
same. 

Some students preferred the use of formulas as a language in order to express or retain 

their ideas, 

S 1: To understand I still need the formula. Helps things in 
perspective, formulas lay out what variables you have, and 
what will change. Formulas help to explain your 
understanding. 
S2: To see it in an equation form helps me to retain better 
[the idea).... 

Other aspect of the use of formulas is that formulas reinforce students' conceptual 

understanding. Some students referred to formulas as an "evidence for your ideas"; as 

one student explained, 

S : The concept comes from the formula. I understand 
what's going on and the formula justifies it. 

Students who operated with formulas, chose a specific formula "because matched the 

information given by the problem", and requested quantities be assigned to the variables 

of the formula in order to operate with them. Indeed, 72% of the students who used 

equations requested numerical values for the parameters involved in the formula of 

specific heat in order to demonstrate the difference in temperature change. However, 35% 

of these students got numerical results that contradicted their thoughts. 



www.manaraa.com

32 

In some cases the use of formulas is preferred to avoid difficulties encountered with the 

written mode. In what follows three different students addressed issues related to the 

audience, or people that could read the text, to the reading, and to the reflection process 

required with the use of text. 

S 1: To write is difficult because you need to put things in a 
way that people would understand while math is more 
concrete. 
S2: Is easier to use equations. I do not like English. Charts 
are easier than to read, it is visual and is not like reading 
books. 
S3: I like the formula most because for the formula the only 
thing that can go wrong is the math. But when you are 
thinking, you can confuse yourself by thinking. S o the 
formula is probably better. 

Characteristics of the use of graphs 

Most of the students welcomed the use of graphs because of their visual aspect, and 

successfully responded to the questions that required their use (problems 3 and 4). 10% 

of the students failed in her/his graphical description of the rate of temperature change of 

two substances on a heating plate, in problem 3.52% of the students viewed the use of 

graphs as "helpers for understanding" or as a way to be more accurate in their 

explanation of a physical process. When students used a graph they extended their 

response beyond what was asked in the problem. For example, 26% of the students 

described the rate of temperature change at and after the boiling point of the liquids on 

the heating plates. Indeed, some students claimed that graphs give a whole picture of the 

process, that "a graph helps understanding because you can see what temperature is doing 

all the time." 44% of the interviewed students referred to a graph as "thought provoking" 

leading to conceptual understanding. 
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The operation with graphs, as was displayed in these interviews, involved the 

identification of critical points (for example, in problems 4a and 4b the point at which 

both materials reach the equilibrium temperature), the assignation of a physical meaning 

to the slope of the graph, and the requirement for quantities (a data table). The 

identification of critical points required the integration of different modes, either by the 

use of equations (the specific heat and energy conservation equations was used by 60% of 

the interviewed students to calculate the equilibrium temperature) or by estimations based 

on the information given in the problem (e.g. the estimation of the equilibrium 

temperature based on the values of specific heats). In both cases students needed to assess 

the results obtained for these critical points. Here is an example of what a student said 

regarding problem 4a, 

S: Equations make sense when you calculate an amount and 
[you are] thinking about. Like the final temperature, needs to 
be between 473 K and 313 K. A graph helps you to see an idea 
in a visual form. 

70% of the students correctly identified the specific heat dependence of the slope of the 

lines that represented the rate of temperature change in problem 3 (with larger slope 

corresponding to a smaller specific heat), and also assigned a constant slope to the lines 

corresponding to the constant heating rate of the heating plates. 10% of the interviewed 

students correctly identified the slope dependence with the specific heat but the 

explanation they gave for a constant slope to the lines in problem 3, was based on the 

constant value of the specific heat of the liquids, ignoring the heating process. 35% of the 

students made explicit, graphically and verbally, the difference between the slopes of the 
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lines in problems 3 and 4 due to different heating processes. In one case, the function that 

described the rate of temperature change was linear (due to the constant heating rate of 

the heating plate, problem 3). Anon-linear function was used to describe the temperature 

change rate in the calorimeter, because " I will assume that the rate will decrease as they 

[the metal and water] will get closer to the final temperature" (problem 4). 

18% of the. students that used a graph either ask or wrote themselves a numerical table for 

the dependent and independent variables, because "it will make the graph accurate." As 

one student explained, 

S: Graph is adding to understanding, depending how accurately the 
graph was done. If it is a quick sketch it does not help to 
understand, but if it is accurate I can look at it and will help. 

Characteristics of the use of words 

The use of words and text was explored as a tool for conceptual understanding in both, 

contextualized (problems 1 through 4) and de-contextualized problems (problem Sa, Sb, 

and Sc). 52% of the interviewed students claimed that conceptual understanding comes 

first by using words. Their conceptual understanding of the topics was mostly based on 

the use of words. Only 10% of the interviewed students based their explanations on the 

values of the specific heats given by the problem omitting a conceptual response, while 

13% of the students used analogies for explanations. Following is a transcription of how 

a student used an analogy to answer problem iii) referring to the difference in the 

specific heats of liquids A (higher specific heat) and B (lower specific heat) and the effect 

on temperature change, 
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Liquid A "holds" more energy per mass than B. This is 
analogous to two similar airplanes, airplane A differing in 
that it has more seats. More people fill the plane and thus 
take-off is slowed. 

An alternative use of words as a working mode is the use of de-contextualized 

problems, in which concepts are probed out of a physical context. 83% of the 

students who were interrogated on the usefulness of de-contextualized problems, 

such as problem 5, answered that this type of problem helps in their conceptual 

understanding, either because it forces them to reflect on what they do and do not 

understand ("helps me to know what I do not understand") or because "... if you 

see the concepts together, you can compare them and connect all of them." 

Interrelations between different representational modes 

Formulas and words 

Formulas and conceptual understanding expressed through words are tightly related or 

"complemented" as was claimed by the interviewed students. In particular, formulas can 

unveil relations between variables that were ignored at a conceptual level. As an 

example, 13 % of the students were not able to distinguish heat from temperature at a 

conceptual level, but they successfully explained the difference in temperature change 

between the metal and water when using the specific heat equation. Nonetheless, there 

appears to be a hierarchy between numerical results derived from the use of formulas and 

conceptual understanding as displayed by the fact that the students who obtained 

numerical results that contradicted their ideas about the change in temperature (18% of 

the interviewed sample) disregarded the numerical results. 
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Formulas and graphs 

Most students viewed the use of graphs as complementary to the use of formulas; for 

many students, graphs "back up formulas." However, 30% of the students indicated that 

graphs add in their understanding of formulas. As one student explained, 

S : It is easier to graph than to deal with formulas. You can 
visualize better. Think how the temperature will change, plot this 
in a graph and after graphing come out with a formula. 

At the same time, 18% of the students viewed graphs and formulas as two unrelated 

representational modes, "as independent from formulas." The relation between formulas 

and graphs emerged in two ways. One way refers to the use of formulas in order to make 

a graph, as in the case of critical points of a graph (discussed above}, while the other is 

related to the translation of a formula into a graph. Although 30% of the students 

recognized that the lines of the graph should be related to a physical formula, only one 

student out of 23 was able to propose a formula that relates the temperature change with 

time (problems 3 and 4). The interviewed students had no difficulty in assigning a 

mathematical equation to the lines in problem 3, but were not able (with exception of 

one) to explain the equation in physical terms. 

Graphs and words 

As was discussed above, graphs are mainly viewed as conceptual tools; graphs "reflect 

my thoughts." However, 2 students out of 23 drew graphs that contradicted their 

conceptual explanation of thermal equilibrium by extending the lines that represented the 

temperature change for both substances in the calorimeter beyond the equilibrium 
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temperature. On the other hand, students who ignored the difference in rate of 

temperature change of the substances in problem lb (9% of the interviewed sample) 

correctly estimated the final temperature (closer to the initial temperature of water, 

showing that the temperature of water changed in a lesser amount) when drawing a 

graph. 

The last problem of the interview was formulated in terms of bar charts. Although the 

problem aimed to ask about the change in temperature and internal energy of two objects 

in an insulating container, five out of the six students that tried to solve this problem, 

viewed it as an ill-defined problem. In an ill-defined problem the problem is not clear, 

therefore, finding a solution requires finding first what the real problem is (Newell and 

Simon, 1976). Only 26% of the interviewed students (six students) reached problem 6 

within the time of the interview and one was able to solve it successfully. In this context, 

students contradicted their previous statements in such ways as: a) energy transfer 

between bodies A and B had the same sign and different magnitude (33% of the students 

that did problem 6), b) equal initial temperature for bodies A and B respectively, but 

different final temperatures (33%), c) no energy transfer but equalization of the final 

temperature given different initial temperature for A and B (50%). 
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Table 2. Triangulation of students' and instructor's interviews subcategories. 

Students' Categories Instructor's Categories 
Better understanding of temperature change 

and energy transfer, in the case of hot metal 

in cold water because the system is simple 

and variables can be identified. 

Emphasis on the difference between a 

physical process and a chemical reaction. 

Conceptual meaning of specific heat for 

explaining difference in temperature 

change. 

Hot metal in cold water: discussion of the 

meaning of specific heat. 

Direct relation between heat and mass 

through the specific heat equation. 

Manipulation of the variables of the 

specific heat equation such as the mass of 

the substance. 

Identification of bond breaking-forming as 

the temperature change source. 

Chemical reactions: difficulties with the 

source of heat and the mass of the reaction 

Formulas are the favorite mode of work to 

introduce a new topic 

The class is mainly focused on problem 

solving skills, while try to integrate both 

concepts and problems. 

Changes in temperature are equal because 

heats gained and lost are equal. 

Difficulty in distinguishing between heat 

and temperature. 

Molecular explanation of temperature and 

energy transfer. 

Use of the molecular model to explain what 

is temperature in simulations. 

Not able to operate with ill-defined 

problems. 

Not enough ill-defined problems in the 

lectures, only two open inquiry labs in the 

whole course. 
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Trends from the quizzes 

Problems 1, 2d and 2g of the quiz (see Appendix I) were analyzed in order to explore 

whether there is any relation between the mode of word. and the displayed conceptual 

understanding of atopic. Achi-square test was performed in problems 1 and 2g, to test if 

the operational mode, (variable O) was independent of the type of explanation (variable 

E). The categories of the operational mode variables were "verbal" or "equation," 

referring to the use of text or formulas to approach the problem, while the categories of 

the explanatory variable varied depending on the problem. The analysis of standardized 

residuals was performed for problems 1 and 2g, in order to identify the related categories 

between the two variables. The observed and expected frequency tables, and the analysis 

of standardized residuals for each problem are presented in the Appendix III. A summary 

of the results is presented in Table 3a, Table 3b, and Table 3c for problems 1, 2d, and 2g, 

respectively at the end of this section. Examples of the coding sheets containing the 

subcategories of the explanations are included in Appendix Iva, and Appendix IVb for 

problems 1, and 2d respectively. 

Results from Problem 1 

The categories of operational variable were: "verbal" and "equation." For the explanatory 

variable the categories were: Gf, meaning "good functional" and corresponds to correct 

explanations based on the conceptual meaning of specific heat; Gp, meaning "good 

parametric" and corresponds to correct explanations based on the given values of the 

parameters of the problem omitting any reference to the relation between the specific heat 
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and temperature change; W, meaning wrong explanations, and N, referring to no 

explanation. 

The observed frequency table for problem 1 (Appendix IIIa) indicates that 81% of the 

sampled students (89/110) approached the problem using words. 39% of these students 

gave a parametric explanation, 30% gave a conceptual explanation based on the meaning 

of specific heat, and 28% gave a wrong explanation. Only 2% of the students that 

approached problem 1 using words avoided an explanation. 52% of the students that 

approached the problem using equations answered correctly based on the values of 

specific heat for water and copper (good parametric), 19% gave conceptually ri ch 

explanations, while 14% either gave incorrect explanations or did not complete the 

explanation part. Apparently there is a larger tendency to omit explanations among the 

students that preferred equations than for students that used words. 

The result from the chi-square analysis indicates that there is a marginal dependency 

between the operational and the explanatory variables in problem 1. The probability to 

fail in the rejection of the null hypothesis was 0.043. Also, the obtained discrepancy 

between the observed and expected frequency distribution is marginally higher than the 

discrepancy obtained when a probability of 0.05 of failing to reject the null hypothesis 

(a) is tolerated. The residual analysis shows dependence between the use of text or 

equation with the omission of explanation. Students that approached the problem using 

equations tend to omit, more than what is expected, the explanation. 
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Results from Problem 2d 

The operational categories of problem 2d were V and E corresponding to "verbal" and 

"equation," respectively. The explanatory categories were based on the physical concepts 

included in students' responses. For examples of these categories, please see Appendix 

IVb. The main categories are, 

Category I: correct use of principle of conservation of energy, and the concept of thermal 

equilibrium 

Category II: confuse temperature and heat 

Category III: confuse thermal equilibrium and the specific heat equation. 

A category is such that it includes more than 5% of the total sample (111) responses. 

Therefore, categories for which there were fewer than 5% responses were excluded from 

the statistical analysis, and the resulting sample of problem 2d consisted of 89 quizzes out 

of 111. The observed frequency table for problem 2d (Appendix IIIb) indicates that 91 

of the students approached the problem using words, 69% of these students gave a 

category I explanation, while 18% displayed some confusion regarding heat and 

temperature (category II), and 12% of the students are confused about the specific heat 

equation (category III). The overwhelming use of text to approach problem 2d can be due 

to the way in which it was formulated asking for what students think about the change in 

temperatures (see Appendix T). This type of question stimulates a response using text 

interfering with the statistical assumption that the operational variable has a priori an 

equal probability to be "verbal" or "equation". Therefore a statistical analysis is not 

appropriate in this case. 
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Results from Problem 2g 

The operational categories of problem 2g were v and E corresponding to "verbal" and 

"equation," respectively. The explanatory categories are based on the physical concepts 

included in students' responses. The main categories are the following, 

Category I: correct use of the principle of conservation of energy, and the relation 

between heat and mass 

Category II: confuse temperature with heat 

Category III: ignores the effect of the mass in the specific heat equation 

The criterion for the inclusion of a category is as before (more than the 5% of the total 

sample responses), and the resulting sample of problem 2g was 93 quizzes out of 111. 

The observed frequency table for problem 2g (Appendix IIIc) indicates that 91 % of the 

sampled students approached the problem using words, of which 53% answered and 

explained correctly relating mass and energy transfer and its effect on the temperature 

change. 22% of the students who approached the problem with words omitted the 

explanation. 9% of the sampled students approached the operational part of the problems 

using formulas; SO% of them did not complete the explanation part. The result from the 

chi-square analysis indicates that both, O and E variables are independent for problem2g. 

Indeed, the probability to failing to reject of the null hypothesis is 0.127 and the obtained 

discrepancy of the chi-square distribution is much smaller than the tabulated discrepancy 

for a=0.05. 
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Table 3a. Frequency distribution of operational and explanatory variables for Problem 1 

Mode Explanation* 

Verbal: 81 % of the total sample 

39% (pazametric) 
30% (functional) 
28% (wrong) 
2% (none) 

Equation: 19% of the total 

sample 

52% (parametric) 
19% (functional) 
14% (wrong) 
14% (none) 

Table 3b. Frequency distribution of operational and explanatory variables for Problem- 2d 

Mode Operation* Explanation* 

Verbal: 91 % of the total sample 

69% correct answers 100% Category I 

31 %incorrect answers 60% Category ~ 

40% Category III 

Equation: 9% of the total 

sample 

50% correct answers 100% Category I 

50% Incorrect answers 100% Category II 
0% Category III 

*. The percentages reported in these columns are relative to the population of the 
previous column 
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Table 3c. Frequency distribution of operational and explanatory variables for Problem g 

Mode Operation* 
53% correct answers 

Explanation* 
75% Category I 
25 % None Text: 91 % of the total sample 

47% incorrect answers 
12% Category II 
72% Category III 
16% None 

- Equation: 9% of the total 

sample 

87% correct answers 43% Category I 
57% None 

13 % incorrect answers 100% Category II 

* The percentages reported in these columns are relative to the population of the previous 
column 
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CHAPTER 4: CONCLUSIONS 

Conclusion from the interviews 

Heat and Temperature 

Two main ideas are embodied in calorimetry: the principle of conservation of energy 

applied to heating of different bodies, and the idea that heat is linked to temperature 

change (through the specific heat equation). These ideas, which only include heat and 

temperature, could imply some sort of equivalence between them as was claimed by 65% 

of the interviewed students. Two main arguments for supporting equivalence between 

heat and temperature emerged from the interviews: one is through an operational relation 

between them ("temperature measures heat," 20%, and "temperature is heat average," 

10%); while the second is based on the nature of heat and temperature, both associated 

with molecular motion (35%). Both notions could imply that heat is a property of a 

substance instead of transfer of energy: in the first case, the materialistic idea is indirect 

(temperature is an intensive property of a substance, therefore if heat is like temperature, 

heat is also a substance characteristic), while in the second case heat is a directly 

associated with matter through the motion of its molecules. Indeed, many researchers 

(Erickson, 1980; Guesne, 1985; Fuchs, 1987; Rogan, 1988) agree that physics and 

chemistry novices have a materialistic concept of heat that resembles the "caloric 

theory." The dominant theory of heat at the beginning of the 19th century treated heat as a 

substance (caloric) that flowed from a hot to a cold body. Under this theory, temperature 

was a measurement of how much "caloric" a body contained. This theory was abandoned 
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when it was observed that mechanical work6 on a body could raise its temperature, or 

more formally, an equivalence between mechanical work and heat was found . 

Moreover, the apparent materialistic nature of heat accommodates in students conceptual 

frameworks of thermodynamics for the examples treated in lectures. In the case of two 

substances in the calorimeter at different initial temperatures, the microscopic theory of 

temperature explains the process of temperature change, which in some cases was 

thought as equivalent to heat. This confusion between the microscopic idea of 

temperature and its further extrapolation to the concept of heat could result from working 

with microscopic and macroscopic thermodynamics contexts at the same time, as was 

indicated by several researchers (Se-Yuen and Young 1987; van Roon et al., l 994; 

Loverude et al., 2002). While, from the use of chemical reactions as examples, 

interviewed students responded, "When bonds form and break, molecules move." This 

idea of heat as a substance's property seems very resistant to change. Students that held 

this conception successfully operated with the specific heat equation, as was also found 

by Gabel and Bunce (1994). However, when students were asked to compare heat and 

temperature in contrasting pairs (problem 5 of the interview) most of them established a 

sort of equivalence between these concepts. When the interviewer asked about the units 

used to designate heat and temperature, all the students recognized that they are different 

but could not resolve the conflict between the equivalence of the concepts and the 

difference in the units. The strong commitment that college students have to a 

6 Initial observations were carried out by Count Rumford, in which he noticed that friction occurring when 
boring cannons increased their temperature. 
~ The quantitative equivalence was discovered by Joule. 
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materialistic idea of heat was also found by other researchers (Fuchs, 1987; Reiner et al. 

2000) as well as the idea that heat and temperature aze interchangeable (Wiser and Cazey, 

1983). 

When introducing the First Law of thermodynamics, in which heat is related to the 

difference between the change of internal energy (referring to kinetic and potential 

energies at a molecular level) and mechanical work, heat can be seen as the balance 

resulting from the interplay of different types of energies in a given system and as a 

transfer of energy. Another situation that clearly shows the difference between heat and 

temperature is when changes in the phase of a substance take place. In this case heat is 

added to the system without temperature change but with a change of state$. Although 

calorimetry has the advantage of being very "concrete" in terms of simple laboratory 

experiences, it could lead to the simplistic idea that heat and temperature are equivalent. 

Indeed, van Roon and collaborators (1994) named thermochemistry as a "proto-

thermodynamic" context in which work and heat are not related, and heat can be 

explained by a materialistic notion. While in a thermodynamic context, the idea of heat as 

energy change is reinforced because of the First Law of Thermodynamics, which relates 

heat and work. A more elaborated meaning of heat requires other frames in which the 

concept of system, and diverse type of energies are in place. Systems in calorimeters (as 

used in college courses and texts) represent a particular example of the energy 

conservation principle, and of the causes for a substance's temperature change. 
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The use of representational modes 

The study of physics and chemistry relies on the use of symbolic representations. As was 

indicated by some of the interviewed students and by numerous research studies, 

symbolic representations are not only carriers of meaning but also they may serve to 

catalyze improved understanding of a concept (van Heuvelen and Zou, 2001; Radford, 

2000; Fosnot, 1996; von Glasersfeld, 1987; Posner at al. 1982). The ability to transfer 

between different representational modes is associated with the capability of problem 

solving. Indeed, good problem solvers tend to be flexible in the use of a variety of 

symbolic representations switching to the most convenient in order to emphasize a 

desired characteristic during the solution process (Lesh, et al. 1987), or because some 

representations more efficiently show quantitative relations (Kaput, 1987). Also, the 

manipulation of representational modes and translations are relevant in understanding 

scientific models (Janvier 1987; Hestenes, 1996). Models require a "representational 

phase," in which relevant characteristics of the referent are identified and there is a 

correspondence between the original situation and the representational models), and a 

"translation phase," in which the model is probed in conditions different than the original 

ones in order to make viable predictions. 

In the present study, the use and transfer between graphs, formulas and conceptual 

understanding expressed with words, were tested. As is reported in the diagram of 

s This process is the reverse of the chemical reaction, in which two substances of equal temperature react 
producing heat that changes the temperature of the product. 
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"Trends from Interviews" section, the main trends emerging from student's interviews 

were: 

a) Graphs contribute to conceptual understanding of the system as a whole 

b) Words contribute to conceptual understanding of specific elements 

c) Formulas are preferred to learn a new topic 

d) Although formulas are easier to use than words, both .are strongly connected 

e) Students displayed an unclear understanding of the connection between physical 

formulas and graphs. 

Conclusions from studies of expert/novice differences in mastering scientific concepts 

strongly rely on the differences in the organization of structures of knowledge (DiSessa, 

1983; Glaser, 1990). Experts take and use information in chunks that require organizing 

and integrating knowledge in patterns, while novices rely on individual pieces of 

information of the system elements (McDermott, 1984; DiSessa 1988; Glaser, 1990). In 

general, experts use qualitative representations, such as graphs, pictures, diagrams and 

bar charts, in order to understand a problem, while novices use formulas to approach a 

problem (Plotzner, 1994). The use of modes that promote conceptual integration could 

contribute to scaffolding students' expertise in science. Therefore, the use of graphs as a 

way to integrate information about the system under study is desirable. 

Highly organized structures of knowledge require the recognition of the fundamental 

principles that underline diverse pieces of information. Experts initially approach 

problems from a qualitative perspective prior to the retrieval of equations, while novices 
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rush into quantitative manipulation of formulas (Larkin et al., 1980). Therefore, emphasis 

on conceptual aspects of a problem could be very beneficial to scaffold novices into 

expert levels. 

Interviewed students had a good predisposition to the use of graphs, and used them 

effectively. for conceptual reasoning. Indeed, van Heuvelen and Zou (2001) recommend 

introducing qualitative representations before mathematical equations. However, in most 

of college science courses the use of formulas and the ability to solve problem through 

their correct use is the main goal of instruction. Formulas should result from conceptual 

understanding, as a way to display variables and their relations in anon-ambiguous and 

with a condensed language. Deeper understanding requires the use and transformations 

between formulas, graphs, and texts (written or oral) in order to achieve highly organized 

structures of knowledge. As students indicated in the interview, formulas are easier than 

the use of words, "...when you get to think you can confuse yourself '; apparently the 

mere use of formulas could reduce conceptual thinking. 

The interviewed students had difficulty to associate graphs with physical formulas, 

although they were able to translate concepts into the graph (e.g. different slopes 

corresponding to different specific heats). This could indicate that the transfer between 

formulas and graphs is an indirect transfer (Janvier, 1987) requiring more than two 

representational modes such as formulas-words-graphs. However, students and instructor 

indicated that different representational modes were introduced in different contexts: the 

use of formulas and some conceptual remarks were used in lectures, while the use of 
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graphs was mostly limited to the lab. The association of representational modes to 

specific contexts could interfere with the ability to integrate them. 

The problem of ill-defined problems 

Ill-defined problems are problems in which the given information is vague and in general 

are different problems than those for which solutions follow a pattern. Interviewed 

students displayed a very low proficiency in dealing with these types of problems. In 

particular, students found the presentation of a bar chart to report the information of the 

problem "very confusing." Their reasoning and predictions derived from this 

representational mode conflicted with previous results obtained for a similar physical 

problem when using different representations. The difficulty encountered with bar charts 

in the context of thermochemistry contradicts the findings of van Heuvelen and Zou 

(2001) on students' deeper understanding with the use of bar charts in an introductory 

classical mechanical course. This can be an indication that the chemistry students have a 

poor understanding of the energy conservation principle (the represented concept) or of 

the use of bar charts. 

An effective way to develop problem-solving and critical thinking skills is through the 

use of ill-defined problems because it requires the evaluation of different possible paths 

to find a solution to the problem (Reed, 2002). The way experts proceed with ill-defined 

problems can be summarized as follows: a) choice of plausible constraints, b) imposing 

values on the parameters of the problem, c) search for analogies, d) identify the 
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fundamental principles that underlie the problem in order to pursue similar solutions of 

well-defined problems (Glaser, 1990). Therefore, a class practice that is based on the 

implementation of these steps could facilitate the ability to solve ill-defined problems. In 

particular, it can be desirable to use schematic and conceptual representational modes, 

such as graphs or diagrams, for which constraints and values of parameters are not 

critical for their use. The approach to ill-defined problems exposes students to practices 

that encourage the organization of knowledge structures based on fundamental principles, 

and the transfer between known and novel situations. I strongly believe that the ability to 

solve ill-defined problems closely resembles the scientific thinking, stimulating 

creativity. 

Conclusions from the quizzes 

The purpose of the quizzes was to test students' understanding of the basic ideas of 

calorimetry: the principle of conservation of energy within the calorimeter, and the 

relation between heat and temperature change through the application of the specific heat 

equation in relation to the working mode. Working modes (equation, text or graphs) were 

not specified in the problems and students had the freedom to choose any one. From the 

analysis of the quizzes the following can be concluded, 

1. Most of the sampled students approached the problems of the quiz verbally: 81 %for 

problem 1, and 91 %for problems 2d and 2g. 
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2. The use of words or formulas could depend on the formulation of the problem 

Questions that focus on students' opinions or thoughts could imply the use of text. An 

example is question 2d of the quiz, which targeted the use of the principle of 

conservation of energy along with the specific heat equation; nonetheless, 91 % of the 

students answered using text. 

3. The use of words or formulas could depend on the ability to integrate "new 

knowledge" (through accommodation or assimilation) with prior knowledge. 

Question 2g intended to test students' understanding of the effect of the mass on heat 

and temperature change. Although question 2g was formulated similarly to question 

1, 10% more students used words here than in the first problem. For problems 1 and 

2g, 69% and 53% of the verbal answers were correct, respectively. Both problems 

require the use of the specific heat equation, however students indicated that they 

were not as familiar with the idea of the dependence of heat and mass, as with the 

idea of temperature change in relation to heat. Indeed, 22% of the verbal responses to 

problem 2g lacked an explanation, while only 2% for problem 1. Also the language 

that students used to explain problem 2g was less specific than in the case of problem 

1. Despite the fact that the quiz was given two weeks after instruction on calorimetry 

in lectures, the specific heat equation and the relations implied by its parameters 

seems to be new to most students. Apparently novice students approach problems 

using words first, unless an equation is explicitly requested. The inclusion of a 

formula in the response requires recognition of formulas as tools for conceptual 

understanding, and this seems to occur with ideas that are familiar to students. 
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4. The independence of the explanatory (E) and operational (0) variables depends on 

the topic of the problem. If students are familiar enough with the topic, as in problem 

1, some of them will explain the functional relations implied by the formula, and the 

use of words will lead to richer explanations than the mere use of words without the 

notion of the formula. Once the formula is used, the use of text could lead to higher 

conceptual understanding. In that case, a marginal dependency between the O and E 

variables could be found because the operational variable would correspond to a stage 

in understanding. The use of words could correspond to students that either 

understand the topic very well and can formulate explanations based on the idea 

implied by the formula, or to students whose understanding is rather basic and has not 

reached the formal stage (pre-formula). Students who used a formula to answer the 

problem reached a formal operational level, but not necessarily a deep understanding 

of it. Therefore, in this case the mode of operation could correspond to a depth in 

understanding. On .the contrary, if the topic is new to the students, as in problem 2g, 

most of them are in the first stages (pre- or formal operation); the operation is mostly 

verbal but does not corresponds to the internalized meaning achieved after the 

abstraction of the formula. In that case how students approach a problem does not 

reflect a deeper conceptual understanding and the E and O variables are independent. 

5. The use of equations tends to diminish the inclusion of explanations. For both 

problems 1 and 2g students who used words have a lesser percentage of omitted 

explanations than students who used equations to approach the problems. In problem 
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1, the percentage of omitted explanations was 2% and 14% for the use of words and 

equations respectively, and in problem 2g, 22% and 50%. This situation could be due 

to the fact that the students that used equations reached a formal stage but not deep 

conceptual understanding, derived from "reading" of the formula. Therefore, richer 

explanations can be found in students that approached the problem verbally. An 

example can be found in problem 1, in which "functional" explanations were 

distributed as follow: 19% in equation responses, and 30% in the case of verbal 

responses. Students that rely only on formulas apparently see them as the justification 

of their thoughts (see in Results from the Interviews/Modes Categories). 

Stairway Model for Conceptual Understanding 

Symbolic expressions (as formulas) are abstractions of meanings derived from concrete 

.experiences and students' prior knowledge. Experiences are the referent to be represented 

seeding the ground for further higher order abstractions that lead to different 

representational modes, such as written or verbal texts, reading, graphing and formulas. 

The transition between the naive verbal descriptions of experiences to the codification in 

a symbolic expression requires identification of the elements of the experience and their 

mutual interactions, with symbols and operations. This correspondence process 

constitutes an abstraction. Progressing in understanding implies explaining the meaning 

of a symbolic expression and "re-covering" the ideas fostered by the concrete 

experience. This internalization of meaning is critical in order to achieve a structural 

knowledge of a topic as experts do. The internalization of meaning takes place after a 
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process of synthesis similar to the mechanism of production of utterances (Galbraith, 

1999). Only when the learner can verbalize the "story" of the symbolic expression, 

conceptual understanding is increased. 

Translations between verbal, symbolic (here referring to mathematical notation and 

graphs) and verbal again, in the re-conceptualization stage, iterate. A model of this 

iterative process, the Stairway Model, is presented in Figure 3. Each iteration represents a 

higher abstraction level. The transition from verbal to symbolic requires an abstraction, 

while the transition from symbolic to verbal stages requires a synthesis that produces a 

deeper understanding of the referent. The higher conceptual status achieved by the textual 

recovery of the symbolic expression implies a hierarchy between results obtained from 

the use of formulas and students' conceptions. As was indicated before (see Results/ 

Trends from the interview) students will commit to their ideas if they contradict their 

numerical results. 

The transition from a verbal expression to a symbolic one requires an abstraction that 

increases the organization of knowledge. The symbolic stage (and re-conceptualization 

stage associated with it) in each abstraction level corresponds to a larger structure of 

knowledge, ranging from a single formula in low levels to reach the formulation of a 

model in higher abstraction levels. The role of science instruction should be to stimulate 

students through the stairway of deeper understanding and higher levels of abstractions. 
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Figure 3. Stairway Model for conceptual understanding. The transition from textual 

(here the same as verbal) to symbolic expressions requires abstractions, while from 

symbols to text requires a synthesis. Si (i=I, II, ....) corresponds to the symbolic 

expressions of different abstraction levels. 
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Limitations of this study 

Difficulty of combining interviews and quiz results 

Interviews and .quizzes are two different methods, each of them with benefits and 

limitations of their own. Interviews allow an in-depth exploration of students' thoughts 

and emotions, and the effect of the researcher's perception of interviewee's discourses 

can be minimized through clarification questions during the interview. Although a 

researcher can have an agenda for the interview (semi-structured interview) the outcome 

is less predictable. On the other hand, quiz outcomes are more specific but the impact of a 

researcher's perception on students' responses cannot be avoided. Nonetheless these 

methods are different in nature, and they complement each other. A comparative list of 

interview and quiz problems is included in Table 4 at the end of this section, in which 

problems are matched regarding different working modes of the same calorimetry topic. 

A weakness of this study is the difficulty of combining both interview and quiz results, 

because it fails to fulfill some methodological conditions 

1. Comparable students' grades distribution between interview and quiz populations. 

Students' grades were very different between two samples. Interviewed students 

mostly had high grades, while for the quizzes, students' grades displayed a broader 

distribution. This interferes with the possibility of drawing conclusion from 

interviews and quizzes altogether, because the proficiency that students displayed in 

the use of a specific mode could be due to their higher level of achievement and not 

to an attribute of the mode itself. 
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2. Comparable instruction for students that participated in the interviews and quizzes. 

Although interview and quiz populations attended lectures given by the same 

instructor two semesters apart, the instruction of both groups is quite different. The 

quiz was given two weeks after a lecture on calorimetry, but for many students, 

before the laboratory session, while all the interviewed students completed their 

calorimetry laboratory experiment a few weeks before the interview. 

3. Comparable tune on task. Quizzes were completed during 20 minutes in lecture; 

while interviews lasted up to one hour, and each student worked on each problem on 

her/his own pace. 

Problems arising from the design of the research tools 

1. Awareness of the impact of the context of the research tool (quiz or interview) on 

individual problems. Issues like the order of problems in the research tool, based on 

the same topics and requesting different working modes, could impact the proficiency 

displayed in the responses. Therefore, the design of the order of the problems in the 

research tools and the inclusion of the variable "order" in the statistical analysis is 

recommended. 

2. Include questions that specify the working mode (in the quiz) in order to have a better 

matching between quiz and interview problems . 
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Problems arising from the student's sample 

The results found in this study are based on college students' ability to solve problems in 

thermochemistry. Most of these students are engineering or life science majors and 

constitute a limited portion of the learning population. In particular, the interviewed 

students are high achieving students with a relative total score of 80% and up. This 

characteristic of the sampled population does not allow generalization of the results 

concerning the use of representations and conceptual understanding of calorimetry to the 

general learning community of non-science students. 
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Table 4. Correspondence between interview and quiz problems for calorimetry concepts 

but requiring different working modes. 

Interview Quiz 
3 (graph) 1 (text or formulas) 

1 b (text) 

1 c (formula) 

4a (graph) 

2d (text) 

4b (graph) 2g (text or formula) 
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Future study 

a) Replicate this present study improving the experimental conditions and design of 

the research tools based on the points discussed above in order to integrate both 

interview and quiz results. 

b) Quantify the parameters that are involved in the Stairway Model and test their 

sensitivity. 

c) Replicate this study (with improved design of the research tools) to probe the 

Stairway Model for conceptual understanding in different areas of physics 

(thermodynamics, mechanics, etc...) and for different levels of students' expertise. 
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APPENDIX I: PROBLEM SET ON CALORIMETRY 

The specific of water is 4.184 J/g C and the specific heat of copper is 0.71 J/g C 

1) Consider equal masses of water and copper at the same initial temperature. If we 
add 100 Joules of heat to each (water and copper), which will achieve the highest 
temperature? Explain. 

Copper will achieve the highest temperature because it has lowest specific heat, 
meaning it requires less energy to increase in one degree centigrade one gram of 
mass. 

2) Copper metal of mass ml at temperature T~ is placed in a calorimeter which 
contains water of mass m2 at temperature TW, where T~ is less than TW. The 
calorimeter is really made of good insulating material and it has a lid. Assume 
that no energy transfer occurs between the walls of the calorimeter and the water. 
There is no energy transfer between the calorimeter and the room where it is 
located. 

a) Draw a diagram of the system. Identify its components. 

b) Do you expect a change of the water temperature (~TW)? If so describe the 
change. 

c) Do you expect a change of the temperature of the copper metal (OTC)? If 
so describe the change. 

d) Do you think that there is any connection between OTW and ~T~? Explain 
your answer. 

Yes, the temperature change of water is related to the temperature change 
of cooper because both are in contact in an insulating container. The 
amount of heat gained by the copper is the same as the amount lost by the 
water, therefore water temperature change is, 

dTw = (cPr/cpw) dTc 
with cps and cpyy specific heats of water and copper respectively. 
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e) If a transfer energy occurs: What type of energy is it? Is this energy 
different than OT? Explain which object or objects are gaining energy and 
which object or objects are loosing energy. If no energy transfer occurs, 
explain how you know. 

fl Would you expect a change of the total energy of your system as the time 
goes on? Why? 

g) In a second experiment and double the amount of water, keeping the initial 
water temperature the same, and the mass and temperature of the copper 
the same. What would you expect OTW of this experiment to be: MORE 
THAN, LESS THAN or THE SAME with respect to OTW of the first 
experiment? Explain. 

Less. The ratio of temperature change of water to copper will be half with 
respect to the ratio in the first experifnent because there is more mass 
(twice as much) per Joule to change the temperature. 

h) In a third experiment and double the amount of water, keeping the initial 
water temperature the same. We use a different piece of copper metal at 
the same initial temperature, and we observe a change in the water 
temperature OTW, is the same as in the first experiment. What is different 
about the new piece of copper metal? Be as exact, write a formula if you 
can. 
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APPENDIX II: INTERVIEW QUESTION ON CALORIMETRY 

The specific heat of water is 4.18 J/g °C, and the specific heat of copper is 0.71 J/g °C. 

1) A calorimeter is made of very good insulating material and it has a lid. We can 
assume that no energy transfer occurs between the walls of the calorimeter and 
any material contained within it, and also that there is no energy transfer between 
the calorimeter and the room where it is located. 

A piece of copper metal is put into a calorimeter which is partly filled with water. 
The mass of the copper is the same as the mass of the water, but the temperature 
of the copper is higher than the temperature of the water. The calorimeter is left 
alone for several hours. 

a) Does energy transfer occur? Please explain your answer. 

Yes, energy transfer occurs between copper and water because these 
substances are in an insulating container at different initial temperatures. 

b) Is there a temperature change in either the copper or the water, or both? If no, 
explain why not. If yes, is the temperature change of the copper greater than, 
less than, or equal to the temperature change of the water? Please explain your 
answer. 

There is a temperature change in both, water and copper because the 
energy gained by one substance is equal to the energy lost by the other. 
Cooper will change its temperature the most because it requires less 
energy to change in one degree one gram of mass, as is indicated by its 
lower specific heat relative to the one of water. 

c) Try to give a mathematical justification for your answer to parts (a) and (b). 
That is, use a relevant equation in each case and explain how the mathematics 
proves your answer. 

a) In a calorimeter there is no heat transfer with the exterior then: 

Qw+Qc = 0 ~ Qw = ~c 

b) Using the specific heat equation: 

mcWdTW = -inc~dT~ ~ dT~ _ — (cW/c~) dTW 
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2) In an insulated constant-pressure calorimeter with negligible heat capacity, 

hydrochloric acid solution is combined with ammonia solution. The temperature 

of the combined solution is observed to rise several degrees. 

(a) Explain what causes this increase in temperature. 

The chemical reaction causes the temperature of the combined solution to 
increase. 

(b) Is there any energy transfer during this process? Please explain. 

Yes, the energy transfers from the reactants to the combined solution; the bond 
forming process releases energy. 

3) Suppose we have two separate containers each containing different liquids with 
different specific heats, liquid A specific heat is three times bigger than the specific heat 
of liquid B, but with the same mass and initial temperature. Each container is placed on a 
heating plate that delivers the same rate of heating in joules per second to each liquid. 

i) Below please graph the temperature of each liquid as a function of time. 

Temperature 
(degrees) 
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ii) Please explain the reasoning that you used to determine how you chose to draw the 
graph as you did. 

(Graph before reaching the boiling point: two straight lines with different slopes: line B 
has a slope three times larger than line A). The rate of the increment of temperature is 
constant due to the heat plates delivering the same rate of heating. Line B has a slope 
three times larger than A because substance B increases its temperature three times 
faster due to the fact that its specific heat is three times lower than the specific heat of A. 

4) Suppose that a mass of copper is heated to 473 K initial temperature. Suppose then that 
is placed in a insulated container of water that is at 313 K initial temperature. 

a) Graph the temperature of the copper and water if they both have the same mass. 

Temperature 
(degrees) 

Time 

b) Graph the temperature of the copper and water if the mass of the copper is double that 
of the water. 

Temperature 
(degrees) 
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5) Please briefly compare and relate to the best of your understanding the following 
concepts: 

a) Enthalpy and Heat 

Enthalpy is heat transferred under constant pressure. Enthalpy is a state function, 
meaning does not depend on the way the heat under constant pressure was 
transferred but on the initial and final values. Heat is energy transfer and it is not 
a state function. 

b) Heat and Temperature 

Heat is energy transfer, and depends on the amount of substance. Temperature is 
related to the kinetic energy of the substance's molecules and is independent of its 
amount. 

c) Specific heat and Heat 

Specific heat is a property of a substance, indicating the amount of energy needed 
to change one degree of temperature of one gram of mass. Heat is proportional to 
the specific heat as is shown in the specific heat equation. 

6) Suppose we have two samples, A and B, of the same material placed in a partitioned 
insulated container of negligible heat capacity. Sample A has the same mass as 
sample B. Energy but no material can pass through the conducting partition. The 
atmosphere in the container can transfer energy but has a negligible heat capacity. 
Assume specific heat is independent of temperature. 

Complete the bar charts below for temperature and energy transfer. If any quantity is 
zero, label that quantity as zero. Explain your reasoning below. 
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~a 

~2 

nkT 

-2 

_a 

b 

~~ 

Energy Transfer to Sample: Absolute Temperature 

l000 K  

A B 

Energy Transfer to Sample: 

A B 

500 K 

0 

0 
A B A B 

Time Zero Long After 

Absolute Temperature 

A B A B 
Time Zero Long After 
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APPENDIX III: FREQUENCY TABLES OF THE QUIZ PROBLEMS 

Appendix Illa. Problem 1 

Contingency Table 

Gf Gp W N 
Words 27 35 25 ~ 2 89 
Formulas 4 11 3 3 21 

31 46 28 5 110 

Expected Frequency Table 

Gf Gp W N 
Words 25.08182 37.21818 22.65455 4.045455 
Formulas 5.918182 8.781818 5.345455 0.954545 

chi-test= 0.043008 
chi-square(0.05, 3)= 7.814725 
chi-square(0.04, 3)= 8.150584 

The mode of operation is 
marginally dependent 
on the- quality of the response 

Standarized Adjusted Residuals 

Gf Gp W N 
Words 1.034379 -1.09097 1.306247 -2.38229 
Fo rm u I as -1.03438 1.09097 -1.30625 2.38229 

Gf Gp W N 
Words less 
Formulas more 

The dependency arises from the fact that people that used words tended to omitt 
explanations less than expected, while those using formulas 
omitted more than expected. There is not dependency of the operation with the quality 
of explanation but on the omission of it. 
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I Appendix Illb. Problem 2d 

Contingency Table 
II III 

Verbal 56 15 10 81 
Equation 4 4 0 8 

60 19 10 89 

Categories of Explanations 
I: correct notion of conservation of energy and thermoequilibrium 
II: confuse heat and temperature 
III: do not display idea of thermoequilibrium in a calorimeter 

People that approached the problem verbally displayed understanding of conservation of energy 
and thermoequilibrium. 
People that used equations did equally in the category (I) than in (II) 
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Appendix Illc. Problem 2~ 
Table of Contingency 

I II III N 
verbal 45 3 18 19 85 

equation 3 i 0 4 8 
48 4 18 23 93 

Categories of Explanations 
I: correctly relate mass, energy transfer and thermoequilibrium 
ll: confuse heat and temperature ~ 
III: ignore the relation of mass and heat 
N: None 

Expected Frequency Table 
I II lil N 

verbal 43.87097 3.655914 16.45161 21.02151 
equation 4.129032 0.344086 1.548387 1.978495 

chitest: 0.12939 _ 
chitest(0.13, 3): 7.236612 
chitest(0.05, 3): 9.487728 

The obtained chisquare test distribution (7.2371 is samller than the tolerated discrec~ancv (9.4f~7) 
when the probability to fail in rejecting the null hypothesis is 0.05. ~ 

obtained a probability of 0.13 and achi-square discrepancy of 7.237 
Thefore the variables are independent!! 
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APPENDIX IV: CODING SHEET OF THE QUIZ PROBLEMS 

Appendix IVa. Problem 1 

s`s# Oper. Oper. Type Expl. Type Comment 
145 G verbal G 

,Expl. 
parametric correct sense of Cp and DT 

148 G numerical G ~ parametric uses formula q=mcpdT 
269 G verbal G functional concept of Cp 
173 G verbal G parametric no mention Q and DT 
285 G verbal G #unctiona! concept of Cp 
303 G verbal G parametric no mention Q and DT 
358 G verbal G parametric no mention Q and DT 
375 G verbal G parametric correct sense of Cp and DT 
88 W verbal W parametric T prop to Cp 

131 G numerical G parametric uses formula q=mcpdT 
186 G verbal G functional no relation to Cp, heat conductivity 
187 W verbal W parametric T prop to Cp 
207 W verbal W parametric T prop to Cp 
215 G verbal G functional concept of Cp 
221 W verbal W parametric T prop to Cp 
235 G verbal G parametric no mention Q and DT 
19 G numerical N uses formula q=mcpdT 

289 G verbal G correct sense of Cp and DT 
302 G numerical 

, parametric 
G parametric correct sense of Cp and DT 

314 G verbal ~G parametric correct sense of Cp and DT 
323 G verbal G parametric correct sense of Cp and DT 
325 G verbal G parametric correct sense of Cp and DT 
354 G verbal G parametric ~no mention Q and DT 
359 G verbal G ~ parametric correct sense of Cp and DT 

61 G numerical G functional concept of Cp 
85 G numerical G parametric no mention Q and DT 
28 G numerical G parametric correct sense of Cp and DT 
37 G verbal G parametric no mention Q and DT 

151 G verbal G parametric no mention Q and DT 
189 W verbal W functional ~ Density no relation wi#h Cp 
213 G verbal W functional no Q pro. Cdt, relate w/solid propert. 
390 G numerical G parametric no mention Q and DT 
266 G verbal parametric T prop to Cp _W 

Clues 
s's#: resulted from the random selection of the samples of different laboratory sections 
Operation G (good) or W (wrong) refers to the correct or incorrect answer to the problem 
Type of Operation: numerical (formulas) or verbal 
Type of Explanation: parametric (rely on the parameters values of the problem) 
or functional (rely on the concepts) 
Comments: categories extracted from students responses; they are not verbatim 
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Appendix IVb. Problem 2d 

s's# Oper. Oper. Type Expl. Comment Category 
145 G verbal N 
148 G verbal N 
164 G verbal G final T the same for both I 
173 G verbal G final T the same for both I 
285 G equation W adiabatic condition for T II 
303 G verbal G final T the same for both I 
358 G verbal N 
375 G verbal G gain and lost Q I 
88 G verbal N 

. 131 G verbal G final T the same for both I 
186 G verbal N 
187 G verbal G final T the same for both I 
207 G verbal G gain and lost Q I 
215 G verbal W average of Ti's III 
221 G verbal G final T the same for both I 
235 G verbal G energy transfer I 
19 G verbal G gain and lost of Q I 

289 G verbal G final T the same for both I 
302 G verbal G gain and lost Q I 
314 G verbal N 
323 G equation G adiabatic cond. For Q I 
325 G verbal N 
390 G verbal G gain and lost Q ~I 
359 G verbal G gain and lost Q I 
61 G equation W DT the same for both II 
85 G verbal W ~ relates to mass only III 
28 G verbal G gain and lost of Q I 
37 G verbal ~W DT the same for both II 

151 G equation G adiabatic cond. For Q I 
189 G verbal G final T the same for both I 

Clues 
s`s#: resulted from the random selection of the samples of different lab~rat~ry secti~n~ 
Operation: G (good) all students of this example answered that the temperatures are related 
Type of Operation: equation or verbal ~ 
Comments: categories extracted from students responses; they are not verbatim 
Category: conceptual categories grouping students responses 

I I I I 
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